
A Cooperative Parallel Metaheuristic for the

Capacitated Vehicle Routing Problem

Jianyong Jina, Teodor Gabriel Crainicb, Arne Løkketangen a,∗

aMolde University College, Specialized University in Logistics, N-6411, Molde, Norway
bSchool of Management,UQAM & Interuniversity Research Centre on Enterprise

Networks, Logistics and Transportation, Montréal, QC, Canada

Abstract

This paper introduces a cooperative parallel metaheuristic for solving the
capacitated vehicle routing problem. The proposed metaheuristic consists
of multiple parallel tabu search threads that cooperate by asynchronously
exchanging best found solutions through a common solution pool. The solu-
tions sent to the pool are clustered according to their similarities. The search
history information identified from the solution clusters is applied to guide
the intensification or diversification of the tabu search threads. Computa-
tional experiments on two sets of large scale benchmarks from the literature
demonstrate that the suggested metaheuristic is highly competitive, provid-
ing new best solutions to ten of those well-studied instances.

Keywords: Vehicle routing, Parallel metaheuristic, Cooperative search,
Solution clustering.

1. Introduction1

In recent years, cooperative parallel metaheuristics have increasingly been2

used for solving a variety of difficult combinatorial problems [1]. Such parallel3

metaheuristics usually use multiple processes (threads) working simultane-4

ously on available processors, with varying degrees of cooperation, to solve5

a given problem instance. The rationale behind this phenomenon may be6

twofold. First, it has been demonstrated that such parallel algorithms are7

∗Corresponding author. Phone: +47 71 21 42 74; Fax: +47 71 21 41 00.
Email address: arne.lokketangen@himolde.no (Arne Løkketangen)

Preprint submitted to Computers & Operations Research December 28, 2012

capable of both speeding up the search and improving the robustness (abil-8

ity of providing equally good solutions to a large and varied set of problem9

instances) and the quality of the solutions obtained [2]. Second, parallel10

computing resources have become increasingly available with the advent of11

computer clusters and multi-core processors. The computer clusters usually12

consist of a set of identical computers that run standard operating systems13

and are connected to each other through high speed networks. Many univer-14

sities nowadays possess such computer clusters. In addition, many commod-15

ity laptop and desktop computers today use dual- or quad-core processors.16

Thus, using parallelism has become an advantageous and practical option.17

For detailed introduction to parallel metaheuristics, we refer to the book of18

Alba [3] and the survey paper of Crainic [2].19

The capacitated vehicle routing problem (CVRP), as the classical version20

of the vehicle routing problem (VRP), aims to determine the minimum total21

cost routes for a fleet of homogeneous vehicles to serve a set of customers.22

The CVRP can be defined on a graph G = (N,E) where N = {0, . . . , n}23

is a vertex or node set and E = {(i, j) : i, j ∈ N} is an edge set. Vertex24

0 is the depot where the vehicles depart from and return to. The other25

vertices are the customers which have a certain demand d to be delivered (or26

picked up). The travel cost between node i and j is defined by cij > 0. The27

vehicles are identical. Each vehicle has a capacity of Q. The objective is to28

design a least cost set of routes, all starting and ending at the depot. Each29

customer is visited exactly once. The total demand of all customers on any30

route must not exceed the vehicle capacity Q. Some CVRP instances may31

have an additional route duration limit constraint, restricting the duration32

(or length) of any route to a preset bound D. A detailed introduction of the33

CVRP and its solution methods can be found in the book of Toth and Vigo34

[4], and the survey paper of Laporte [5]. Even though a large number of35

solution methods have been proposed in the literature during last fifty years,36

it still remains computationally challenging to quickly produce high quality37

solutions to large scale CVRP instances.38

The purpose of this paper is to present a cooperative parallel metaheuris-39

tic that takes advantage of modern parallel computing resources for solving40

large scale CVRP instances. The proposed algorithm incorporates multi-41

ple tabu search threads which cooperate by asynchronously exchanging best42

found solutions through a common solution pool, and includes several novel43

features. Intensification and diversification of the searches are based on so-44

lution clustering. Four variants of reinsertion neighborhood are applied and45

2

infeasible solutions may also be sent to the solution pool. These features are46

clearly different from previous work [e.g., 6, 7] and largely contribute to the47

high performance of the proposed metaheuristic. The computational exper-48

iments on two sets of large scale CVRP benchmarks demonstrate that the49

suggested metaheuristic can quickly produce solutions to benchmark prob-50

lems that are highly competitive with the best solutions reported in the51

literature. New best solutions to 10 out of the 32 benchmark instances have52

been identified.53

The remainder of this paper is organized as follows. In the next section54

the description of the proposed metaheuristic is presented. Then Section 355

reports the computational results. Finally, concluding remarks are given in56

the last section.57

2. Description of the cooperative parallel metaheuristic58

In the proposed cooperative parallel metaheuristic (CPM), illustrated in59

Figure 1, multiple tabu search (TS) threads are run in parallel for solving60

a given CVRP instance. Some of the TS threads are designated to con-61

centrate on intensification while the others are assigned to pursue diver-62

sification. These threads communicate asynchronously through a common63

solution pool.64

Figure 1: Framework of CPM

The general scheme of CPM is displayed in Algorithm 1. During the65

search process, the solution pool receives solutions sent from the search66

threads. Whenever a solution is received from a search thread, the pool does67

3

the clustering, selects a solution and sends it back to the same thread. Each68

of the TS threads carries out its search independently and periodically the69

search halts and exports its best found solution. It then receives a solution70

from the pool and resumes its search from this solution. The detailed de-71

scription of the solution pool and the TS threads will be provided in Section72

2.1 and 2.2 respectively.73

The termination of CPM can be controlled in two ways. In the first set-74

ting (denoted as TC1), the termination is triggered by the first TS thread.75

The metaheuristic terminates after the thread runs for a certain number of76

iterations. In the other setting (denoted as TC2), the metaheuristic ter-77

minates after the solution pool receives a certain number of non-improving78

solutions consecutively. A solution is regarded as non-improving when its79

value is not better than that of the current best feasible solution at the pool80

or the solution is infeasible.81

Algorithm 1: CPM

Initialize TS threads and the solution pool
while termination condition not met

Solution pool do
Receives solutions.
Clusters solutions.

Selects and sends solutions back.

Each TS thread do asynchronously
Performs the search.
Sends best found solution to solution pool.

Receives new solution to start from.

end while
Return best feasible solution

In terms of the taxonomy introduced in Crainic and Nourredine [8] for82

parallel metaheuristics, CPM fits into the pC/KC/MPDS classification. The83

first dimension pC indicates the global search is controlled by multiple co-84

operative threads. The second dimension KC stands for knowledge colle-85

gial information exchange and refers to the fact that multiple threads share86

information asynchronously and knowledge is created from the exchanged87

information to guide the cooperating threads. The last dimension MPDS in-88

dicates that multiple search threads start from different points in the solution89

space and follow different search strategies.90

4

2.1. Solution pool91

To explore a search space effectively and efficiently, a metaheuristic ap-92

proach should be able to both intensively investigate areas of the search93

space with high quality solutions, and to move to unexplored areas of the94

search space when necessary. These goals are usually achieved by intensifi-95

cation and diversification mechanisms of the metaheuristic [9]. Glover and96

Laguna [10] highlight that intensification is to carefully search the neighbor-97

hood of elite solutions while diversification encourages the search process to98

generate solutions that differ from those seen before. A solution clustering99

approach is used in CPM to implicitly identify common features of solutions100

and collect search history information, which then provide a good basis for101

selecting promising search areas for intensification and less explored areas for102

diversification.103

During the whole search process, the solutions sent to the solution pool104

from the search threads are dynamically clustered into groups according to105

their similarities. For the CVRP, the similarity can be measured in terms106

of the number of edges solutions have in common. In this way, solutions107

kept in the solution pool can be grouped into clusters and in each cluster all108

solutions have a certain number of edges in common. Each cluster can thus109

approximately represent a region of the search space that CPM has explored.110

The features of the solutions in a cluster, such as the number of solutions and111

the quality of the solutions, can indicate how thoroughly a search region has112

been explored and how promising it may be. Such search history information113

is used to guide the starting solution selection for the TS threads so that they114

can pursue intensification or diversification effectively.115

The solution clustering approach has been applied by Voß [11] for the116

quadratic assignment problem. In his algorithm, a small number of elite so-117

lutions previously found are stored by a clustering approach and are used as118

the starting solutions for the intensification phases. In CPM, the solution119

clustering approach is applied differently in three aspects. First, all solu-120

tions sent to the pool are clustered, regardless of their quality. Second, the121

solutions are clustered for both intensification and diversification purposes.122

Third, the actual clustering mechanism is different.123

2.1.1. Solution clustering124

Clustering is often defined as the process of grouping a collection of pat-125

terns into dissimilar segments or clusters based on a suitable notion of close-126

ness or similarity among these patterns. In CPM, solutions are grouped into127

5

clusters based on their similarities. A cluster, in this context, refers to a128

collection of solutions that are similar. All solutions sent to the solution pool129

are clustered.130

To support solution exchange and information extraction from the clus-131

ters, a set of components are implemented for each cluster.132

• Feasible solution list: a list of feasible solutions assigned to a cluster.133

• Infeasible solution list: a list of infeasible solutions assigned to a134

cluster.135

• Edge residence counter: a residence counter for all edges. The resi-136

dence counter of an edge is defined as the number of feasible solutions137

containing this edge that have been assigned to a cluster. Since the ob-138

jective of the search is to identify high quality feasible solutions, only139

feasible solutions are used to compute the edge residence counter.140

• Feasible solution counter: the number of feasible solutions that have141

been assigned to a cluster.142

• Infeasible solution counter: the number of infeasible solutions that143

have been assigned to a cluster.144

• Average feasible solution value: the average value of all feasible145

solutions in a cluster.146

• Average infeasible solution value: the average value of all infeasible147

solutions in a cluster.148

Whenever a solution enters a cluster, the components of the cluster are149

updated. In each cluster, duplicate solutions will be eliminated and the lists150

of feasible and infeasible solutions are sorted in ascending order according to151

solution value.152

In addition, the clusters are sorted in ascending order according to the153

average feasible solution value. When there are only infeasible solutions in a154

cluster, replace the average feasible solution value with the average infeasible155

solution value for sorting.156

To determine whether a solution is similar to the solutions in a cluster,157

the similarity between the solution and the cluster is calculated according to158

Equation 1.159

6

Similarity =

∑
(ij)∈E nij ×Xs

ij

FSC ×
∑

(ij)∈E Xs
ij

(1)

The components of the formula are defined as follows.160

• nij: the residence counter of edge (i, j) of the cluster.161

• Xs
ij: 1 if edge (i, j) appears in solution s, 0 otherwise.162

• FSC: the feasible solution counter of the cluster.163

•
∑

(ij)∈E Xs
ij: the number of edges in solution s.164

The advantage of computing the similarity in such a way is twofold. First,165

it does indicate how many common edges a solution shares with the solutions166

in a cluster. Moreover, it avoids the heavy computational load of calculating167

the similarities between a solution and every solution in the cluster as other168

clustering approaches do.169

A solution can be placed into a cluster only if the similarity between the170

solution and the cluster is larger than a minimum value. This value is termed171

the minimal similarity requirement. When a solution is sent to the solution172

pool, three possibilities exist. Initially, there is no existing cluster, a cluster173

will be created and the solution will be directly placed into the cluster. When174

there are existing clusters, the solution will be compared with the first cluster175

in the pool. If the similarity requirement is satisfied, it will be put into the176

cluster. Otherwise, it will be compared with the next cluster following the177

sorted order. The comparison may continue until the solution is placed into178

a cluster or it does not satisfy the similarity requirement with any existing179

cluster. Under such a circumstance, a new cluster will be created and the180

solution will be put into the new cluster.181

Moreover, a pair of status flags is attached to each solution that enters182

a cluster for signaling whether it has been used. The two flags are used for183

intensification and diversification respectively. After a solution is selected184

and sent to an intensification TS thread, its status flag for intensification185

will be set accordingly. Likewise, the status flag for diversification will be set186

after a solution is sent to a diversification TS thread. By setting these flags,187

usually each solution can be selected and sent to each type of search threads188

only once.189

7

Three parameters are used to control the clustering process. The first one190

is the minimal similarity requirement that controls the number of common191

edges the solutions in a cluster share. The second one is the maximal number192

of clusters which are allowed to exist in the solution pool. Too many clusters193

will decelerate the clustering process. Whenever a new cluster is created,194

the clustering procedure will check the number of existing clusters. If there195

are more clusters than allowed, a cluster that does not contain any feasible196

solution or has the largest average feasible solution value will be eliminated.197

The last parameter is the maximal number of solutions in a cluster. When198

there are more solutions than allowed, the worst solution in terms of the199

solution value will be removed. It is essential to restrict the number of the200

clusters and the number of solutions in each cluster for the sake of efficiency,201

especially when a large number of threads are employed.202

2.1.2. Solution selection for intensification threads203

For a cluster that contains mainly high quality solutions, indicated by the204

average feasible solution value of the cluster, the search region represented205

by the cluster is usually worth further intensive investigation. In CPM, the206

cluster having the lowest average feasible solution value is assigned as the207

target of the TS threads that pursue intensification. These search threads208

will only receive starting solutions from this best cluster so that the neighbor-209

hoods of high quality solutions can be thoroughly investigated. During the210

whole search process, this best cluster may dynamically be replaced by the211

newly emerged clusters that have lower average feasible solution value than212

the current one. In this way, the intensification search threads will always213

target the vicinity of current best solutions.214

Whenever an intensification thread needs a starting solution, the solutions215

in the best cluster will be checked. The intensification flag of each solution is216

examined one at a time, starting from the solution with the lowest solution217

value, following the sorted order. The first unused solution will be selected.218

When there are no unused solutions in the best cluster, a solution is randomly219

selected from the cluster. This selected solution will be sent to the search220

thread.221

If there are infeasible solutions in the best cluster, they will be examined222

and selected first. The reason for this decision is that preliminary experi-223

ments show there are usually many more feasible solutions than infeasible224

solutions in the clusters. The infeasible solutions will seldom be selected if225

the feasible solutions are checked first.226

8

2.1.3. Solution selection for diversification threads227

The search regions that have been less thoroughly explored can be indi-228

cated by the number of feasible solutions that have been put into the clusters.229

The fewer feasible solutions have been put into a cluster, the less thoroughly230

the region has been searched. Since the tabu search threads seeking diversi-231

fication are expected to concentrate mainly on less explored search regions,232

they will receive starting solutions only from any cluster whose feasible solu-233

tion counter is below a threshold. We term this threshold the diversification234

threshold. When the feasible solution counter of a cluster exceeds the diver-235

sification threshold, the cluster will be neglected while selecting solutions for236

the diversification threads.237

Whenever a diversification thread requires a starting solution, the solution238

selection procedure starts with the cluster with the lowest average feasible239

solution value in the solution pool. If the feasible solution counter of the240

cluster is below the diversification threshold, the solutions in the cluster are241

then examined. If an unused solution is found, this solution is sent to the242

search thread, otherwise, the next cluster following the sorted order will be243

checked. The examination continues until an unused solution is found or all244

available clusters have been checked. When an unused solution is not found245

after examining all clusters, a solution is randomly selected.246

When examining the solutions in a cluster, the infeasible solutions will247

be checked and selected first, as for intensification threads.248

2.2. The Tabu search threads249

In this sub-section, the common features and differences between the TS250

threads included in CPM are provided.251

2.2.1. The common features of the tabu search threads252

The TS threads included in CPM are developed on the basis of the gran-253

ular tabu search that was first introduced by Toth and Vigo [12]. Below, the254

main features of the TS threads are introduced.255

The initial solution256

The initial solution of each TS thread is constructed by using the param-257

eterized Clarke-Wright algorithm described in Yellow [13] with a randomly258

generated shape parameter. The range for the shape parameter is set to259

(0.5, 2) as suggested in Groër et al. [14].260

9

Objective function and constraint relaxation mechanism261

To explore the solution space more thoroughly, infeasible intermediate so-262

lutions are allowed. To this end, capacity and route length constraints are263

relaxed and their violations are penalized in the objective function. This264

augmented objective function is computed as F (s) = C(s)+αQ(s)+βD(s),265

where C(s) is the total travel distance, Q(s) and D(s) denote the total vio-266

lations of the capacity and route length constraints respectively, α and β are267

penalty multipliers. The values of the penalty multipliers are self-adjusted268

during the course of the search as described by Toth and Vigo [12]. The neigh-269

boring solutions, both feasible and infeasible, generated during the search270

process are evaluated in terms of the augmented objective function.271

Inter-route neighborhood structures272

Three neighborhood structures for inter-route operations, which are com-273

monly used in the previously published metaheuristics for the CVRP, are274

implemented in the TS threads. The basic idea of each neighborhood struc-275

ture is described as follows.276

• Reinsertion [15] refers to relocating a customer node from one route to277

another route.278

• 2-opt* [16] eliminates two edges from two routes and reconnects the279

two routes with two new edges.280

• CROSS-exchange [17] swaps two route segments between two routes.281

In CPM the route segments can contain 1-3 nodes.282

All the three neighborhood structures are implemented in each TS thread.283

One of them is randomly selected every TS iteration and each of the neigh-284

borhoods has equal probability to be selected.285

To speed up the search, the granular neighborhood reduction technique286

applied in Jin et al. [6] is adopted in CPM. Let R(u) stand for the route287

containing node u in a given solution, and (u, x) be the partial route from288

node u to node x. Define Nu as the set of the nearest neighbors of customer289

u. Assume node v is a member of Nu and R(v) ̸= R(u). Each neighborhood290

is generated in the following way.291

• Reinsertion: For each customer u, for each v, reinsert u right after v.292

10

• 2-opt*: Let x be the successor of u in R(u) and y be the successor of293

v in R(v). For each customer u, for each v, replace (u, x) and (v, y) by294

(u, v) and (x, y).295

• CROSS-exchange: The procedure introduced in Taillard et al. [17] is296

adopted. To reduce the computational effort, one restriction is im-297

posed. For a route R1, only a couple of routes are chosen for neighbor-298

hood generation. Those routes are selected in the following way. First,299

a node u is randomly selected from the middle part of route R1. Then300

the routes which contain at least one customer node belonging to Nu301

are identified. Only these routes are used to form route pairs with R1302

for neighborhood generation.303

The size of the nearest neighbors set is randomly chosen within a certain304

range at each iteration.305

Four types of reinsertion strategies306

For local search based metaheuristics for the CVRP, one drawback is that307

the edges close to the depot are usually more frequently involved in selected308

moves compared to more remote edges. To improve this situation, reinser-309

tion neighborhood structure for inter-route improvement is implemented in310

four distinct ways. The main idea is to partition the customer nodes into311

groups according to their distance to the depot, and each group should have312

an approximately equal number of nodes. At each iteration, neighborhood313

generation and move selection are carried out separately for each group. In314

such a way, the frequency of modifying the route structures distant from the315

depot can be increased. An example is shown in Figure 2. In the figure,316

the small square stands for the depot and the dots represent customer nodes.317

The customer nodes are divided into two groups, the dots inside the big circle318

belong to the first group while the dots outside the big circle constitute the319

other group. Nevertheless, the nearest neighbors (the dots inside the small320

circle) of a customer do not need to be in the same group as the customer.321

The first type of reinsertion strategy is to put all customer nodes in one322

group, and at each iteration only one move is performed. For the second323

strategy, the customer nodes are partitioned into two groups and two moves324

are carried out at each iteration, one from each partition. Likewise, for325

the other two strategies, the customer nodes are divided into 3 or 4 groups326

and 3 or 4 moves are performed at each iteration respectively. These four327

types of strategies are termed Type 1 reinsertion, Type 2 reinsertion, Type 3328

11

Figure 2: Customer nodes partition

reinsertion and Type 4 reinsertion accordingly. For a given TS thread, only329

one type of reinsertion is applied.330

Solution acceptance and tabu mechanism331

Among the neighboring solutions, the best move in terms of the augmented332

objective function that is non-tabu or satisfies the aspiration criterion is333

accepted. The aspiration criterion overrides the tabu status of a move if this334

move leads to a new best solution in the current search.335

The tabu list is neighborhood dependent. The tabu tenure tt of each336

neighborhood is set to be proportional to the number of nodes in the instance.337

For reinsertion, if u is relocated, u is declared tabu for tt iterations and any338

moves relocating u cannot be performed unless it satisfies the aspiration339

criterion. For CROSS-exchange move swapping route segments (X1, Y1) and340

(X2, Y2), node X1 and X2 are declared tabu and any moves involving the341

two nodes cannot be performed unless it satisfies the aspiration criterion.342

For 2-opt* move adding edge (u, v) and (x, y), node u, v and y are declared343

tabu, any moves involving any one of these three nodes are forbidden unless344

it satisfies the aspiration criterion.345

Route refinement346

In the TS threads, at each iteration, after an inter-route move, the two mod-347

ified routes are refined separately by an intra-route improvement procedure.348

The procedure consists of two simple heuristics developed by implement-349

ing 2-opt [18] and reinsertion [15] neighborhood structures in a local search350

setting. The two heuristics are applied to a route alternately. The heuristic351

using 2-opt repeatedly eliminates two edges and adds two new edges, improv-352

ing moves are accepted until no improvement can be found. The heuristic353

using reinsertion seeks improvement by relocating a node to another posi-354

tion, if a move reduces the route length, then it is accepted. The procedure355

12

terminates when no improvement can be found.356

Solution exchange357

The TS threads halt and exchange solutions with the solution pool period-358

ically. Each TS thread exports its best found solution and receives a new359

solution to resume the search. Each search thread decides when to exchange360

solutions with the solution pool according to its own search trajectory, the361

communication is asynchronous. No direct communication takes place be-362

tween the search threads.363

The search effort between two solution exchanges is termed a search pe-364

riod. During a search period, if the best feasible solution a TS thread has365

found is better than its starting solution, this solution will be sent to the366

pool, otherwise, the best infeasible solution the thread has found will be sent367

to the pool. The rationale behind the decision to exchange infeasible solu-368

tions is that infeasible solutions generated by one thread may be improved369

by another thread so that better feasible solutions can be found.370

The TS threads can stop and exchange solutions with the solution pool371

after either running for a certain number of iterations or failing to find im-372

proving feasible solutions for a certain number of iterations. The first stop-373

ping mechanism is denoted as SM1 and the second one is denoted as SM2.374

The TS threads for intensification and diversification can adopt the same375

(all use SM1 or SM2) or different (some use SM1 and the others use SM2)376

stopping mechanisms. Several settings are compared in Section 3.3.377

Solution representation and transformation378

To speed up the computation, the solutions are stored in a data structure of379

four arrays, namely next-array, pred-array, start-array and end-array. The380

first two arrays keep the successor and predecessor of each node while the381

other two record the first customer and the last customer of each route.382

Using this structure, changes to a solution can be performed very quickly.383

The detailed description of this application can be found in Kytöjoki et al.384

[19] and Groër et al. [20]. On the other hand, to simplify the information385

exchanged between the search threads and the solution pool, the solutions386

are transformed to a giant tour format (without route delimiters) before they387

are sent to the solution pool. When a TS thread receives a solution from388

the pool, the giant tour is transformed back to the four-array format with a389

split algorithm presented by Prins [21]. This split algorithm considers both390

vehicle capacity and route length constraints, and all solutions will become391

feasible after split.392

13

To facilitate the solution clustering and sorting in the pool, the feasibility393

and the objective function value of each solution are required. To this end,394

these two attributes are attached to the giant tour during the transforma-395

tion and are exchanged together. In the pool, each solution is stored as an396

augmented giant tour.397

2.2.2. The differences between the tabu search threads398

To explore the search space effectively and efficiently, some of the TS399

threads are designated to concentrate on intensification while the others are400

assigned to pursue diversification. The intensification threads are imple-401

mented with smaller tabu tenures than the threads seeking diversification.402

Additionally, each TS thread uses only one of the 4 types of reinsertion403

neighborhoods.404

2.2.3. Overall search process405

Each tabu search thread begins its search with an initial solution si cre-406

ated by using the parameterized Clarke-Wright algorithm. At each iteration,407

first a neighborhood structure and the size of the nearest neighbors set (de-408

noted as LS) are randomly selected. When Type 1 reinsertion, 2-opt* or409

CROSS-exchange neighborhood is selected, one set of neighbors is generated410

and the least cost non-tabu solution s̄ is selected to replace the current solu-411

tion s. Then the attributes of the reverse moves are declared tabu and the412

routes just modified are refined by the intra-route improvement procedure.413

Furthermore, if the current solution s is feasible and better than the best414

feasible solution s∗f , replace s∗f with s. When the current solution s is infea-415

sible and better than the best infeasible solution s∗inf , replace s∗inf with s.416

For the other three types of reinsertion (Type 2, 3 and 4), the neighborhood417

generation and move selection (Step 5-10 in Algorithm 2) will be performed418

several times in accordance with the number of groups that the customer419

nodes have been divided into.420

In addition, periodically each tabu search thread stops to exchange so-421

lutions with the solution pool and uses the received solution to replace its422

current solution and the best solutions, and the tabu lists are re-initialized.423

This process is summarized in Algorithm 2.424

3. Computational results425

In this section we describe the experimental platform, the test data sets,426

the algorithm configurations and compare the experimental results against427

14

Algorithm 2: Tabu search
1: Construct si, set s

∗
f = si, s

∗
inf = si, s = si,

2: Initialize tabu lists and penalty multipliers
3: while termination condition not met do
4: Select a neighborhood and LS
5: Generate and evaluate neighboring solutions
6: Select a neighboring solution s̄ that minimize F (s̄) and is non-tabu or

satisfies the aspiration criterion, set s = s̄
7: Declare the attributes of the reverse moves tabu for tt iterations
8: Refine the routes modified
9: Update s∗f and s∗inf
10: Update penalty multipliers
11: If reaching the iteration limit, halt and exchange solution with the

solution pool, reset s∗f , s
∗
inf , s, and tabu lists

12: end while

the results of the state-of-the-art methods and the best known solutions428

(BKS) reported in the literature. The current best known results have been429

updated to include the new best solutions identified by Groër et al. [14], Jin430

et al. [7] and Vidal et al. [22].431

The analysis of the impact on the performance of several algorithmic432

components and the evaluation of the parallel speedup are provided in this433

section as well.434

3.1. Experimental platform and implementation issues435

The proposed metaheuristic is implemented in C++ and uses the message436

passing interface (MPI) for the inter-processor information exchange. The437

results were obtained by running the algorithm on a compute cluster in which438

each node consists of two AMD 6172 processors with 12 cores at 2.1 GHz.439

The basic configuration of CPM has 8 threads. Among them, one thread440

is used for the solution pool, 4 TS threads using Type 1, 2, 3 and 4 reinsertion441

respectively are for diversification and the remaining 3 TS threads using442

Type 1, 2, and 3 reinsertion respectively are for intensification. These 7 TS443

threads are regarded as the basic search threads. When more processors are444

employed by CPM, the 7 basic search threads can be duplicated and run445

on the available processors. The standard configuration of CPM (denoted446

as CPM standard) utilizes 24 threads with one for the solution pool, 14 for447

diversification and 9 for intensification.448

15

3.2. The test data sets449

The computational tests were carried out on the CVRP benchmarks of450

Golden et al. [23] and Li et al. [24]. The 20 benchmark instances of Golden451

et al. [23] have 200 to 483 customers. The first eight instances also have route452

length restrictions. Each instance is based on a simple geometric structure:453

eight instances have customers located in concentric circles around the depot,454

four instances have customers located in concentric squares with the depot455

located in one corner, four instances have customers located in concentric456

squares around the depot, and four instances have customers located in a457

six-pointed star around the depot. The benchmark instances of Li et al.458

[24] have 560 to 1200 customers and route length restrictions, and their459

geometric structure is based on concentric circles around the depot. For460

each instance under each experimental scenario, CPM was executed 10 times461

with different random seeds. The average result and best result of these 10462

runs are reported.463

3.3. Evaluating search stopping mechanisms464

As mentioned in Section 2, the overall search of CPM can be terminated465

according to two conditions, TC1 and TC2. For the TS threads, there are466

two stopping mechanisms (SM1 and SM2) for deciding when to exchange467

solutions with the solution pool. In addition, some of the TS threads are468

designated to concentrate on intensification while the others are assigned to469

pursue diversification. Considering these three aspects, six ways of control-470

ling the search of CPM are compared. The settings of the six variants are471

shown in Table 1.472

Table 1: Search stopping mechanisms

Variant 1 2 3 4 5 6

Overall search TC1 TC1 TC1 TC2 TC2 TC2

Diversification TS threads SM1 SM2 SM1 SM1 SM2 SM1

Intensification TS threads SM1 SM2 SM2 SM1 SM2 SM2

In general, TC1 and SM1 can explicitly control the search effort while473

TC2 and SM2 may stop the search dynamically according to the progress of474

the TS threads. Preliminary testing gave no significant difference among the475

six variants in terms of the solution quality and the search time. Therefore476

we choose variant 1 to perform the remaining computational experiments477

since it allows us to explicitly control the search effort.478

16

3.4. Algorithm calibration479

The parameters of CPM were selected according to the computational480

results of preliminary experiments on the benchmarks of Golden et al. [23].481

A number of different alternative values were tested and the ones selected are482

those that gave the best computational results concerning both the quality483

of solutions and the computational times needed to achieve these solutions.484

The selected parameter values are given in Table 2.485

Table 2: Parameter values for CPM

Parameter Value

Tabu tenure of 0.03|N | for diversification threads
of reinsertion, 0.01|N | for intensification threads
2-opt* and CROSS-exchange

Nearest neighbors (10 + random [0, 10])
set size

Solution exchange 200×
√

|N | iterations.
Minimal similarity 0.7
requirement

Maximal cluster number 100

Maximal number of 300
solutions in a cluster

Diversification threshold 100

Termination condition 150000×
√
|N | for |N | < 500

30000×
√

|N | for |N | > 500

|N | represents the instance size.

3.5. Results for the benchmarks of Golden et al. [23]486

In Table 3 we compare the results for the 20 benchmark instances of487

Golden et al. [23]. In the table, the first column describes the instances488

(instance number and number of nodes). The second column lists the best489

known solutions previously reported in the literature. The third and fourth490

columns provide the best results presented by Groër et al. [14] and Vidal et al.491

[22]. The remaining columns give the average results, average wall-clock time,492

standard deviations and best results of CPM standard. The third last row493

presents the average deviation of all instances from the best known solutions.494

The second last row provides the average wall-clock time per instances for495

17

a single run. The last row shows the number of runs performed for each496

instance in each algorithm.497

From the table, we see that CPM standard has found new best solutions498

to 7 instances (numbers in bold font) while the average deviation of the best499

results from the best known solutions is 0.00%. In terms of this metric, the500

best results generated by CPM standard are better than those of Groër et al.501

[14] and Vidal et al. [22]. The wall-clock time required by CPM standard502

appears shorter than what was used in Vidal et al. [22] and longer than for503

Groër et al. [14].504

Table 3: Comparison of results for benchmarks of Golden et al. [23]

Instances Previous Groër Vidal CPM standard
best et al. et al. Aver. Time SD. Best

known (2011) (2012) (min)
129p

1(240) 5623.47 5623.47 5623.47 5623.65 22.05 0.38 5623.47
2(320) 8404.61 8435.00 8404.61 8434.78 34.22 14.45 8405.81
3(400) 11036.22 11036.22 11036.22 11036.22 44.64 0.00 11036.22
4(480) 13592.88 13624.52 13624.52 13620.30 60.87 10.90 13590.00
5(200) 6460.98 6460.98 6460.98 6460.98 15.83 0.00 6460.98
6(280) 8400.33 8412.90 8412.9 8404.06 26.76 4.97 8400.33
7(360) 10102.70 10195.59 10102.70 10134.93 39.01 11.48 10107.49
8(440) 11635.30 11649.89 11635.30 11635.34 54.61 0.00 11635.34
9(255) 579.71 579.71 579.71 580.04 19.43 0.29 579.71
10(323) 736.26 737.28 736.26 737.16 28.82 0.46 735.66
11(399) 912.84 913.35 912.84 912.72 41.33 0.28 912.03
12(483) 1102.69 1102.76 1102.69 1103.20 58.29 1.28 1101.50
13(252) 857.19 857.19 857.19 858.57 18.06 1.20 857.19
14(320) 1080.55 1080.55 1080.55 1080.55 25.08 0.00 1080.55
15(396) 1337.92 1338.00 1337.92 1340.13 36.33 1.38 1337.87
16(480) 1612.50 1613.66 1612.50 1614.73 48.14 1.80 1611.56
17(240) 707.76 707.76 707.76 707.80 16.39 0.07 707.76
18(300) 995.13 995.13 995.13 998.90 25.01 0.96 997.58
19(360) 1365.60 1365.60 1365.60 1366.12 32.60 0.37 1365.60
20(420) 1818.25 1818.25 1818.32 1819.76 41.93 1.10 1817.89
Aver. deviation (%) 0.10 0.02 0.11 0.00
Time (min) 5.00 58.56 34.47
Runs per instances 5 10 10 10

18

3.6. Results for the benchmarks of Li et al. [24]505

The results for the 12 benchmark instances of Li et al. [24] are presented506

in Table 4. The format of this table is identical to the one of Table 3. For507

this set of instances, CPM standard has found new best solutions to three508

instances (numbers in bold font). In terms of the average deviation from the509

best known solutions, both the average and best results of CPM standard510

excel the best results of Mester and Bräysy [25] and Groër et al. [14]. The511

wall-clock time required by CPM standard turns out shorter than what was512

used in Mester and Bräysy [25] and longer than for Groër et al. [14].513

Table 4: Comparison of results for benchmarks of Li et al. [24]

Instances Previous Mester Groër CPM standard
best and et al. Aver. Time SD. Best

known Bräysy (2011) (min)
(2007) 129p

21(560) 16212.74 16212.74 16212.83 16214.12 14.25 1.05 16212.83
22(600) 14575.19 14597.18 14584.42 14562.10 19.35 11.98 14539.79
23(640) 18801.12 18801.12 18801.13 18853.80 18.18 106.69 18801.13
24(720) 21389.33 21389.33 21389.43 21390.96 22.41 1.39 21389.43
25(760) 16739.84 17095.27 16763.72 16733.07 33.05 16.91 16709.44
26(800) 23971.74 23971.74 23977.73 23981.30 28.73 1.26 23980.12
27(840) 17408.66 17488.74 17433.69 17380.24 38.05 24.26 17343.38
28(880) 26565.92 26565.92 26566.03 26569.96 33.14 1.88 26567.23
29(960) 29154.34 29160.33 29154.34 29157.42 40.85 1.98 29154.33
30(1040) 31742.51 31742.51 31742.64 31746.20 51.17 1.60 31742.64
31(1120) 34330.84 34330.84 34330.94 34333.66 62.63 2.12 34330.94
32(1200) 36919.24 36928.70 37185.85 37188.36 72.36 16.29 37162.54
Aver. deviation (%) 0.23 0.09 0.07 -0.01
Time (min) 104.30 5.00 36.18
Runs per instances 1 5 10 10

3.7. Impact of algorithmic components514

To examine the impact on the performance of CPM of the main algorith-515

mic components, a set of experiments was conducted. In each experiment,516

the CPM standard was altered to deactivate or remove some components517

respectively. The experiments are described below.518

• Only use Type 1 reinsertion (R1): All TS threads employ Type 1 rein-519

sertion strategy. In this experiment, the other three reinsertion strate-520

gies are removed from CPM.521

19

• Only use Type 2 reinsertion (R2): All TS threads employ Type 2 rein-522

sertion strategy.523

• Only use Type 3 reinsertion (R3): All TS threads employ Type 3 rein-524

sertion strategy.525

• Only use Type 4 reinsertion (R4): All TS threads employ Type 4 rein-526

sertion strategy.527

• Only exchange feasible solutions (OF): All TS threads only exchange528

feasible solutions with the pool. When a TS thread does not improve529

its starting solution, the solution can still be sent to the solution pool530

so as to keep the frequency of solution exchange identical.531

• No guidance (NG): In this experiment, both intensification and diver-532

sification mechanism are deactivated. Set cluster size threshold for533

diversification to a large number (e.g. 5000) so that the threads for534

diversification can obtain solutions from any clusters all the time no535

matter how many solutions a cluster contains. Set the tabu tenures536

and solution selection rule of the intensification threads identical to537

those for the diversification threads.538

These modified versions were tested on benchmarks of Golden et al. [23]539

and the average results are compared against those of CPM standard. The540

comparison is shown in Table 5. At first glance the impact on the perfor-541

mance of the algorithmic components may seem small, but it is in fact crucial542

because for these well-studied instances, even minute improvements are diffi-543

cult to obtain. The results thus show that all these algorithmic components544

contribute to the high performance of CPM.545

Table 5: Impact of the algorithmic components

Experiment CPM st. R1 R2 R3 R4 OF NG
Aver. deviation from BKS (%) 0.11 0.67 0.17 0.19 0.23 0.15 0.15
Average wall-clock time 34.47 33.00 33.87 34.45 35.12 34.63 34.53
per instance (min)

20

3.8. Effect of search effort on performance546

To examine the performance of the proposed metaheuristic when dissim-547

ilar search effort is employed, the CPM standard was executed with several548

settings on benchmarks of Golden et al. [23]. In each setting, the total num-549

ber of iterations are altered. The results are showed in Table 6.550

Table 6: Comparison of the effect of search effort

Iterations (1000×
√
|N |) 30 60 90 150 180

Aver. deviation from BKS of best results (%) 0.08 0.05 0.01 0.00 0.00
Aver. deviation from BKS of average results (%) 0.18 0.14 0.12 0.11 0.11
Average wall-clock time per instance (min) 6.84 13.87 20.51 34.47 40.95

In the table, the first row provides the number of iterations for each551

experiential setting. The second row presents the average deviations from552

the best known solutions of the best results for each setting. Likewise, the553

average deviations of the average results for each setting are shown in the554

third row. The last row provides the average wall-clock time per instance555

for each setting. From the results, it is noticeable that the quality of the556

solutions obtained gradually improves until a peak level is reached as the557

search effort increases. Additionally, we can see that CPM standard can558

identify solutions at similar quality to those of Groër et al. [14] and Vidal559

et al. [22] even when less search effort is utilized.560

3.9. Measuring the parallel speedup561

The parallel speedup is one of the most widely used measures of a par-562

allel algorithm’s effectiveness. This metric is defined as the ratio between563

the sequential and parallel times. The sequential time is the amount of time564

required for running the algorithm on a single computer, and the parallel565

time refers to the amount of time required for the parallel computation when566

using multiple processors. However, in this experiment, we do not compare567

the parallel time against the sequential time since it may impair the effec-568

tiveness of CPM to run it on a single computer. We instead compare the569

quality of average results and the wall-clock time when using a different num-570

ber of processors and a fixed amount of search effort (i.e., the total iterations571

per thread times the number of processors). This experiment is carried out572

on benchmarks of Golden et al. [23] and the fixed search effort is set to573

(((150000×
√

|N |) iterations) × (24 processors)). The results are shown in574

21

Table 7. From the results, it is observable that, for up to 240 processors, in-575

creasing the number of processors generally allows CPM to discover solutions576

of approximately equivalent quality in roughly linearly reduced time.577

Table 7: Analyzing the parallel speedup

Number of processors 8 16 24 72 120 240

Iterations (1000×
√
|N |) 450 225 150 50 30 15

Aver. deviation from BKS (%) 0.113 0.109 0.110 0.111 0.116 0.117
Average wall-clock time 101.44 50.88 34.47 11.72 7.00 3.63
per instance (min)

4. Conclusions and Perspectives578

In this paper, we have presented a cooperative parallel metaheuristic for579

the capacitated vehicle routing problem. The computational experiments on580

the two sets of large scale CVRP benchmarks show that the suggested meta-581

heuristic is quite effective and competitive in comparison to state-of-the-art582

methods from the literature. Though the benchmarks used have been well-583

studied, the proposed parallel metaheuristic is still able to identify new best584

solutions to 10 of the 32 instances within reasonable computational time.585

From a parallel computation point of view, the proposed parallel metaheuris-586

tic is efficient and flexible as it can employ at least up to 240 processors and587

achieve a roughly linear speedup.588

In addition, several new features are introduced in this paper. First, us-589

ing the structural information (edge residence counters) of solutions enables590

the solution clustering to be carried out rapidly, even when thousands of so-591

lutions are involved. Search history information can thus be extracted from592

the solution clusters, helping the search to better achieve intensification and593

diversification. Second, the novel way of implementing reinsertion neighbor-594

hoods based on the distance to the depot of customers makes it easier to595

seek improvement for different parts of the solutions. Moreover, for coopera-596

tive search, it appears beneficial to also exchange infeasible solutions among597

search threads. The combination of these features largely contributes to the598

high performance of the proposed metaheuristic.599

In this paper, we focus on cooperation and information exchange and use600

the cooperation concept where all exchanges proceed through the common601

22

solution pool. The solution clustering based intensification and diversifica-602

tion introduced is very general and problem domain independent. It can be603

easily applied in different contexts for solving other combinatorial problems.604

The modification required is to select the solution elements on which com-605

mon features are built and use them in a similarity measure for the problem606

in question. Future work will focus on pursuing other approaches of ap-607

plying the information extracted from the solution clustering and adopt the608

proposed parallel metaheuristic to other classes of problems.609

Acknowledgements610

The authors thank Compute Canada and the Norwegian Metasenter for Com-611

putational Science (NOTUR) for providing computing resources to conduct the612

experiments of this research.613

References

[1] Le Bouthillier A, Crainic TG. A cooperative parallel metaheuristic for
the vehicle routing problem with time windows. Computers & Opera-
tions Research 2005;32:1685–708.

[2] Crainic TG. Parallel solution methods for vehicle routing problems. In:
Golden B, Raghavan S, Wasil E, editors. The Vehicle Routing Problem:
Latest Advances and New Challenges. New York: Springer; 2008, p.
171–98.

[3] Alba E, editor. Parallel Metaheuristics: A New Class of Algorithms.
Hoboken, NJ: John Willey & Sons; 2005.

[4] Toth P, Vigo D. The vehicle routing problem. SIAM Monographs on
Discrete Mathematics and Applications; Philadelphia: PA; 2002,.

[5] Laporte G. Fifty years of vehicle routing. Transportation Science
2009;43(4):408–16.

[6] Jin J, Crainic TG, Løkketangen A. A parallel multi-neighborhood coop-
erative tabu search for capacitated vehicle routing problems. European
Journal of Operational Research 2012;222(3):441–51.

23

[7] Jin J, Crainic TG, Løkketangen A. A guided cooperative parallel tabu
search for the capacitated vehicle routing problem. In: Norsk Infor-
matikkonferanse NIK 2011. Tapir Akademisk Forlag: ISBN 978-82-519-
2843-4; 2011, p. 49–60.

[8] Crainic TG, Nourredine H. Parallel metaheuristics applications. In:
Alba E, editor. Parallel Metaheuristics. Hoboken, NJ: John Willey &
Sons; 2005, p. 447–94.

[9] Blum C, Roli A. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACMComput Surveys
2003;35(3):268–308.

[10] Glover F, Laguna M. Tabu Search. Kluwer; 1997.

[11] Voß S. Solving quadratic assignment problems using the reverse elimi-
nation method. In: Nash S, Sofer A, editors. The Impact of Emerging
Technologies on Computer Science and Operations Research. Boston:
Kluwer; 1995, p. 281–96.

[12] Toth P, Vigo D. The granular tabu search and its application to the
vehicle routing problem. INFORMS Journal on Computing 2003;15:333–
46.

[13] Yellow PC. A computational modification to the savings method of
vehicle scheduling. Operational Research Quarterly 1970;21(2):281–93.

[14] Groër C, Golden B, Wasil E. A parallel algorithm for the vehicle routing
problems. INFORMS Journal on Computing 2011;23:315–30.

[15] Savelsbergh MWP. The vehicle routing problem with time win-
dows: minimizing route duration. INFORMS Journal on Computing
1992;4:146–54.

[16] Potvin JY, Rousseau JM. An exchange heuristic for routing prob-
lems with time windows. Journal of the Operational Research Society
1995;46:1433–46.

[17] Taillard E, Badeau P, Gendreau M, Geurtin F, Potvin JY. A tabu
search heuristic for the vehicle routing problem with soft time windows.
Transportation Science 1997;31:170–86.

24

[18] Flood MM. The traveling-salesman problem. Operations Research
1956;4:61–75.

[19] Kytöjoki J, Nuortio T, Bräysy O, Gendreau M. An efficient variable
neighborhood search heuristic for very large scale vehicle routing prob-
lems. Computers & Operations Research 2007;34:2743–57.

[20] Groër C, Golden B, Wasil E. A library of local search heuristics for
the vehicle routing problem. Mathematical Programming Computation
2010;2:79–101.

[21] Prins C. A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research 2004;31(12):1985–
2002.

[22] Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W. A hybrid ge-
netic algorithm for multidepot and periodic vehicle routing problems.
Operations Research 2012;60(3):611–24.

[23] Golden BL, Wasil EA, Kelly JP, I. M. Chao IM. The impact of meta-
heuristics on solving the vehicle routing problem: algorithms, problem
sets, and computational results. In: Crainic T, Laporte G, editors. Fleet
management and logistics. Boston: Kluwer; 1998, p. 33–56.

[24] Li F, Golden BL, Wasil EA. Very large-scale vehicle routing: New test
problems, algorithms, and results. Computers & Operations Research
2005;32:1165–79.

[25] Mester D, Bräysy O. Active-guided evolution strategies for large-scale
capacitated vehicle routing problems. Computers & Operations Re-
search 2007;34:2964–75.

25

